skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Strömberg, Caroline_A E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseSeed dispersal is a critical process impacting individual plants and their communities. Plants have evolved numerous strategies and structures to disperse their seeds, but the evolutionary drivers of this diversity remain poorly understood in most lineages. We tested the hypothesis that the evolution of wind dispersal traits within the melicgrasses (Poaceae: Meliceae Link ex Endl.) was correlated with occupation of open and disturbed habitats. MethodsTo evaluate wind dispersal potential, we collected seed dispersal structures (diaspores) from 24 melicgrass species and measured falling velocity and estimated dispersal distances. Species’ affinity for open and disturbed habitats were recorded using georeferenced occurrence records and land cover maps. To test whether habitat preference and dispersal traits were correlated, we used phylogenetically informed multilevel models. ResultsMelicgrasses display several distinct morphologies associated with wind dispersal, suggesting likely convergence. Open habitat taxa had slower‐falling diaspores, consistent with increased wind dispersal potential. However, their shorter stature meant that dispersal distances, at a given wind speed, were not higher than those of their forest‐occupying relatives. Species with affinities for disturbed sites had slower‐falling diaspores and greater wind dispersal distances, largely explained by lighter diaspores. ConclusionsOur results are consistent with the hypothesized evolutionary relationship between habitat preference and dispersal strategy. However, phylogenetic inertia and other plant functions (e.g., water conservation) likely shaped dispersal trait evolution in melicgrasses. It remains unclear if dispersal trait changes were precipitated by or predated changing habitat preferences. Nevertheless, our study provides promising results and a framework for disentangling dispersal strategy evolution. 
    more » « less
  2. The assembly of Africa’s iconic C4grassland ecosystems is central to evolutionary interpretations of many mammal lineages, including hominins. C4grasses are thought to have become ecologically dominant in Africa only after 10 million years ago (Ma). However, paleobotanical records older than 10 Ma are sparse, limiting assessment of the timing and nature of C4biomass expansion. This study uses a multiproxy design to document vegetation structure from nine Early Miocene mammal site complexes across eastern Africa. Results demonstrate that between ~21 and 16 Ma, C4grasses were locally abundant, contributing to heterogeneous habitats ranging from forests to wooded grasslands. These data push back the oldest evidence of C4grass–dominated habitats in Africa—and globally—by more than 10 million years, calling for revised paleoecological interpretations of mammalian evolution. 
    more » « less
  3. Free, publicly-accessible full text available January 15, 2026